Reactive Transport Modeling of CO₂-Cement-Rock THE **UNIVERSITY OF UTAH** Interactions at The Well-Caprock-Reservoir Interface: A Case Study of The Farnsworth Unit CO₂-EOR Demonstration

Ting Xiao, Brian McPherson^{*}, Rich Esser, Wei Jia, Amanda Bordelon

Abstract

Wellbore integrity is a key risk factor for geological CO₂ storage. The primary objective of this study is wellbore integrity, and specifically to gain a better understanding of potential impacts of CO₂ leakage through wellbore cement and surrounding caprock. Our primary tool is reactive transport model simulations, calibrated with field data from a case study example, the Farnsworth CO₂ enhanced oil recovery (EOR) unit (FWU) in the northern Anadarko Basin in Texas. Specific objectives include: (1) to analyze impacts on wellbore integrity under CO₂-rich conditions within an operational time scale; and (2) to predict mechanisms of chemical reactions associated with cement- CO_2 -brine interactions. Simulation results suggest that the wellbore cement could maintain its structure and integrity after 100 years. However, pre-existing fractures in the cement-caprock interface are problematic, because calcite in a limestone caprock fracture specifically would dissolve

Case study site –

The Farnsworth Unit

- An active CO_2 -EOR field since 2010
- Southwest Regional Partnership on Carbon Sequestration (SWP) Phase III
- 1 million tonnes of net CO₂ injection through 2017

Modeling Approach

and increase fracture size and permeability.

Results

 CO_2 sequestered in mineral phase (kg/m³) with different reservoir pressure after 30 yr exposure (reservoir Sg 0.3): (a) 23 Mpa (diffusion only); (b) 23.1 MPa; (c) 23.5 MPa; (d) 24 MPa.

Reservoir chemistry –

Field monitoring data, medium value

• Minerology –

Caprock: field monitoring data Cement: Class H cement composition

Mineral	Volume	Mineral	Volume	
	fraction		fraction	
Shale		Cement		
Calcite	53.38	CSH	58.21	
Dolomite	2.15	Portlandite	28.89	
Illite	10.28	Monosulfate	9.96	
Kaolinite	1.70	Kaotite	2.90	
Ouartz	29.3			

Mass Transfer

Relative permeability & Capillary pressure

Relative permeability	y					
Rock domain	λ		S _{1r}	S _{1s}	S_{gr}	
Cement	0.4	457	0.3	1.0	0.05	
Fracture	0.4	457	0.3	1.0	0.05	
Capillary pressure						
Rock domain	λ	S _{lr}		$\mathbf{S}_{1\mathbf{s}}$	$1/P_0$	P _{max}
Cement	0.457	0.0		0.999	1.6×10^{-7}	10^{8}
Fracture	0.457	0.0		0.999	5.1×10^{-5}	107

Diffusion

 $D^{eff} \propto \tau \cdot \phi \cdot D$ where: τ – Tortuosity ϕ – Porosity *D* – *Diffusion Coefficient*

For cement, set: $\tau = 0.01, D = 10^{-11} \text{ m}^2/\text{s}$

Conclusions

- \checkmark Operational reservoir pressure and reservoir gas saturation (Sg) affect the height of the carbonated zone along an existing fracture.
- \checkmark For typical wellbore cements that undergo exposure to long-term CO₂ injection, integrity will likely be maintained for at least 100 years.
- If an acid plume enters an existing limestone caprock fracture, calcite would likely \checkmark dissolve, increasing fracture permeability.

Acknowledgement

This study is supported by the U.S. Department of Energy and NETL, contract DE-FC26-05NT42591.

